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ABSTRACT

\\;>A nev implicit, iterative wethod of solving the
Parabolired llavier-Stokes (PNS) Equations claims to overcome the
ellipt.c character of the embedded subsonic sublayer by
explicitly introducing pressure as an additional state variable.
The Bhutta-Lewvis approach wmakes no sublayer pressure assumptions.
The validity and basis of that method is explored in this thesis
by examining the relevant eigenvalues governing warching
stability. An original code vas also developed in order to
examine the numerical character of the marching, iterative
solutions as they develop. Test cases vere carried out for a twvo
dimensional vedge configuration at Mach numbers 3 and 15 and
Reynolds numbers ranging from :4x10° to(1x10" at the initial data
plane. bobd o D ailion

An eigenvalue analysis disclosed that the wmethod is
unstable in subsonic regions.’ Introducing the additional state
variable does not change the character of the squations.

- Resiults for the test cases confirmed the presence of
instebility. Classic departure behavior vas produced in tightly
clustered grids and convergence ta separated flov was shown in
less clustered grids. Marching vas achieved only in relatively ‘ ,
high Reynolds number flow with a large stable marching step -izo.(ﬂ:qu
Uniform step size vas used in this study, but it is possible that S ]
variable step sizes alloved Bhutta and Lewvis to wmarch IS ;
successfully; hovever, no discussion of the step size variation !
and its relationship to stability appeared in their original '
vork.

Thesis Advisor: Dr. Judson R. Baron
Title: Professor of Aeronautics and Astronautics
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1.0 ANTRARYCTIQN

Bhutta and Levia' have proposed a nev and strikingly
different method of solving the Parabalized Navier-Stokee (PNE)
equations. This nev method claims greater accuracy for the same
computing time. In essence, the original idea behind the new
acheme is Lo solve the normal system of non-linear partial
differential equations with the equation of state includad as an

additional equation and prdi.uro as an additional state variable.

The entire methad will be reconstructed and reexamined in

detail here. The primary focus vill be on the classical
substitution for pressure in the wosentum and energy equations,
and cthe pressure role in Reference 1 vhere it is kept separate in
the state equation. Specifically, a conventional twvo-dimensional
state vector cf the forms

o

AL

o

fE

is augmented in the nev PNS scheme' and appears as

q=

T332°

Althouga equations and unkovns consistently increase by
one, two of the resulting state elements are equivalent according
to the state equation. The equation asystem is of a wixed

diff{erential/algebraic type. Moreover, Bhutta and Levis

10
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explicitly rule out the need for a sublayer assumption. Previous

PNS coczis have intraoduced pressure assumptions in the subaonic
portion of the boundary layer in order to eliminate elliptical
constraints on marcring downstream and the development of

departure solutions.

The PNS Equations vere developed to save on the large
storage requirements needed for the full Navier-Stokes equations.
Their develcpment arcse from the need tc solve large numbers of
problems vhere viscous contributions are dominant in the
direction normal to the streamvise direction. In other words,
flowvs that are boundary-layer-like are suitable to be solved by
the PNS equations. This includes a large class of high speed

flove which are of current interest.

Pirevious PNS codes have used some sort of sublayer
pressure assumption to enazble a marching solution in the
streamvise direction. Lin and Rubin!'* have used presaure from
experiments and have set the suktsonic streamvise pressure
derivative equal to the derivative at the edge of the subsonic
layer. Lubard and Helliwvell?.!* use a backvard difference for
the streamvise pressure derivative. Vigneron et al?+!* treated
the pressure derivative exactly in fhe supersonic region defined
by

M* > 1/(2-9)
For other Mach numbers the pressure derivative is suppressed by

the factor

L i B N V™ W MR . oam e @

2 g




C1/7¢y-1)101-1/7C1+{y-1)M*)]

Schiff and Steger®* specified the aubsonic pressure to be equal to

pressure at the bottom of

the supersonic region- Kaul!* uses a

global relaxation over the entire domain while still raintaining

or separation-like solutions, are observed in the boundary layer

i ' equations vhen the streamwisme pressure gradient is not specified.

Similar behavior has been

Barnett.*®

rigure 1.1

mixed hyperbolic/elliptic
on the other hand, claims
of the physical nature of
assumptions, the code can

Justification reats there

5 the marching scheme. Lighthillt*?® in 1953 found that departure,

Supersonic Veloc.ty Profile

Since the flov within some region near a surface is
alvays subscnic (Fig. 1.1) and hence elliptic, those assumptions

have besen required to change the physical description from a

investigated in the PNS equations by

to hyperbolic character. Reference 1

that without changing the description
the flowfield, i.e., without sublayer

be marched in hyperbolic fashion.

12
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upon a stability analysis which is !
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based on n“madified.state-equation,' Further analysis will also

be presented in the stability chapter of this theasis.

Althodgh dast in the framevork of a PNS problem, the .

implications of ﬂucﬁ modification of an equétion system to

achieve gtable marching would impact invmany areas besides fluid

dynamics. Being able to\ﬁgthnmuticaily éhnnge the chiracte: of a

sy=tem of equétions viihout'chanéing the'phyéical'aspectS'nf
particular problems would b}nefit most ;f not all of the physical
sciences with pronises of greater accuracy and efficiency of

solutions. It is therefore of some importance to rigorously

examine the suggested new method.

-
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2.0 PROBLEY DESCRIPTION

| In repraoducing the new PNS scheme, the emphasis here is
on the role of the individual procedural components of the
algorithm: normalization, initial conditions, step size,
iteratiQe technique, matrix formulation=, smoothing, etc. and how
these relate to convergence and marching. %his study is
| condernegAmorélwith the evolving -olution rather thaa the speed,

’accuracy, or efficiency of the scheme.

In order to understand how the method works, the first
objective of this thesis was to devise a faithful ccde which
iould provide sample calculations for a simple but meaningful
physical problem. A wedge flow at M=2 and 15 and Reynolds
number= ranging from 4x10' to 1x197 are used. The second purpose
involve= stability questionasi:?.13.14.,13 gnd includes eigenvalue
analyses of a previcus® scheme and the nev PNS scheme, as vell as
researching the behavior of aystems of partial differential

equations.

2.1 PROBLEM AS TESTED

Reference 1 used the new PNS achema on a blunt body at
Mach 25 at Reynolds numbers of 2.92x10% and 1.72x10* based on
nose radius. The reason for these values was to test the scheme

at high velocitieas and low Reynoldas Number with large viscous

14
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1Q£f§c£s. vhere conventional PNS schemes break dovn.

Since the current study iz concerned primarily with the
vil;dity of the concept in question, it uses a simpler problem:
a simple wvedge flying at Msch 3 and 1S and Reynolds numbers from
4x10* to 1x10?. Reynulds number can be varied to simulatc more or

leas viscous conditions.

The figuro;belov shovs the coordinate system of the vedge

and Table 2.1 shows the freestream conditions.

_—

Shock

01 = --wedge angle
B = shock angle

Figure 2.1 Wedge Coordinate System |

15




FREESTREAM VALUES' 80,000 FEET

DENSITY 8.6 x 10-°
: ) PRESSURE - 38.125
3 TEMPERATURE 38s. 99
g SONIC SPEED 977.6
| VISCOSITY 9.7 x 10-¢

T s e e

16

SL/FT
LB/FT?
*R
FT/SEC

SL/FTSEC

Table 2.1 Freestream Values
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3.0 CONSERVATION EQUATIQNS

As the name suggests, the Parabolized Navier-Stokes
Equations are derived from the full Navier-Stokes Equations. In
a somevhat similar approximation as for the boundary layer
equations, only some cf the viucoua terms are retained. The PNS
system is applicable to supersonic flow and, since it is valid in
both the viscous and inviscid portions of the flow, the

interacticn between such regions is included automatically.?

In a normal supersonic viscous flovw, the no-slip
condition at the surface implies that the boundary layer is at
some point subsonic and transitions to supersonic flow within the

boundary layer (Figure 1.1).

A consequence of this subsonic sublayer iz that the
atreamvise flov is elliptic despite the cuter supersonic flowv and
the solution cannot be marched downstream in a hyperbolic/
parabolic fashion. The constraint introduced by sublayer
agsumptiong is control of the upstream communication of pressure
diaturbances through the subsonic region. By making sppropriate
Pressure assumptions, such as constant presasure across the
subLiayer, the solution can be marched in the streamvise
direction. This has been demonstrated in a number of previous

PNS schemes.2»8, %, 14

17
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The navelty of the current method is that no such
assumption is wmade. The claim is that by treating the equation
of state as a separate but coupled equation, the eliiptic nature
of the problem is circumvented. Although nc assumptions may wnean
greater accuracy, it is necessary to demonstrate that the state
equation treatment somehowvw alters the character of the equation

system. This point wlll be considered further.

3.1 DERIVATION

In twvo dimensions, the Navier-Stokes Equations in vector

form appear as:

q" * tEi - EV].: * tGi - GV],; - H = o 3-1

vhere q is the state vector, the comma indicates partial
differentiation and E and G are the X and 2 flux vectors. The i
and v refer to inviscid and viscous and all variables are

dimensional. The vector H containa the state equation.

The X and Z directions correspond to the components along
and normal to the wedge murface of the current problem (Fig.

2.1).

Y-}




Here:

)

P im £hn extra state variable corresponding to the added equation
of state. The density-temperature product has been used hers for

consistency vith the convention in Reference 1.

The derivation of PNS equaticons involves an order of
lagnitﬁdo analysis, much like the bourdary layer equationa. The
most comwmon form (Lubard and Helliwvell, 1973, 1974)2 is obtained
by assuming steady flow and that the streamnvise viscous
derivative terms are negligible compared to the normal (and
transverse, \f 3-LC) viacoua derivative termsa. In other vords,
the PNS equations are derived simply by dropping all viscouas
terms containing partial derivatives wvith respect to the
strearvise direction. With this in wind, it is rather simple to

reduce equationa 3.1 to PNS forwm:
Ei'l * Gipl = BVpI * H 3.3

The state vector remains the same as in equation 3. 2.
Since the equation of state is a separate equation and is
algebraic in formwm, it is the sole contributor to the separate

vector, H.

e




The individual flux vectors are:

Ei

Gi =

Gv =

[~

avw

T/7¢y=1) +» V¢/2)m

e

vhere V& = yut + vt

- \

A
me e+ p

(T/(r1) « V& /2)pw

N \

Tz

WTez + Wizz =

20
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The above flux vectors remain diwensional.

3.2 HONRINFRSIONALIZATION

Follawing the convention of Reference 1, the non-

diwmensional variables bhecome:

u=u/ae (* nowv indicates a dimensional quantity)
v e w/ae
e =p /e
T=aT/Te

o
L]

P’ / (pugat)’
N piue
X = X' /L

2 =2/

wWhen these definitions are substituted into the dimenmional

equations 3.4, the result is the nondimension&l PNS equations:

Ei. - Gi' b & = er' H§ * H 3- 5

21
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The nondimeasional state equatinn contained in the H vector is
% s aT. Unless steated othervise, all

egquations and 3araneters henceforth will be non-dimensionul.

The factar € results from the normalization process and

is defined as

€ = Ne/Re. 3.6

Re. is the Reynolds number based on the rzference length, L'.

Re. » (smuel./pe)’ 3.7

For the viscous vedge flow in this study a characteristic

scale psrumeter is implied by the boundary layer d’splacement

thickness, &*. In dimensional form?

é*' =x (1.7208)X' /(Re )'/® 3.8

Squaring both sides, wmultiplying both sides by X' /(L' )* and

simplifying gives (in nondimensional form)

(§*)* = (2,96)X/Re.

L' is the reference length cnosen to be the vedge surface

lacation at vhich Xu»(X' /L' )=}, 30 that Re. followvs from:

22
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R.l. .20 96, ( ‘. ). 3. 9

é°* is the nondimensional boundary layer displacement thickness at
X=). This is estimated by knowing the boundary layer thickness
at the starting point. 1If the starting plane is at X=)1 there ia

|

|

|

{ = covresponding Re, and L' for any choice of &* and vice versa.
|

| for example, at Me = 3 and ¥ith a 7* (half angle) vedge, the

shock angle is about 24°*. From Figure 2.1, with X = },
Z=tan(shock angle - vedge angle) or Z = tan (24° - 7°) =« 0.3.
Assuming a boundary layer that occupies 10X of the shaock layer,
its thickneas vill be about 0.03 and a reascnable approximation

for &°* might be 0.01. Using 3.9:

Re, = 2.96 x 10*
and using 3.7

L' = 3.43 x 10~* £t 3.10

0f course increasing or decreasing the boundary layer thickness

vill result in changes in the estimate cf §°* and the viscous
nature of the problem for the corresponding swmaller or larger

Reynolds number.
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3.3 GENERAL_CQORDINATE TRANSFORFMATION

The PNS equations in the form of 3.3 are sppropriate if
the grid is everyvhere orthogonal and rectangular.
Unfortunately, a matsch of grid with the wedge and shock
boundariesa requires a trlnitaruution. More generally the
equations must be prepared to allov a general cocordinate
transformetion from a nonorthogonal physical plane to an
orthogonal computational piino. The details of a specific grid
transformation for the vedge will be explained in Chapter 4; the
general transformation of the PNS equations will be discuased

here.

In essence, the goal is to relate the non-orthagonal X, 2
system to an orthogonal § & system. Ve
take § as the streamvise direction, and { as
the crossflov direction. To begin, start again with the full

non-dimensional steady Navier-Stokes equations:
(Ei - €Ev],y, + [Gi ~ €Gv],, - H =0 3.11

Ta transform to the §, { systewm, the

derivatives (,X) and (,Z) must be changed to a combination of the

derivatives (,§) and (,{). By the chain |
|

rule,
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(,X) = (g,u)(,g) * (Gl)(.;)
= & (,8) =+ & (% 3. 12
(,2) = §i(,86) «+ &,
| This assumes a most general transformation of the form:
§ = §(X,2)
& = &X,2)

Now uge 3.12 in 3.11 to get

(& (EL-€GL)Y + & (Ev-€Gv}i], §

+ [& (E1-€Gi} + & (Ev-€Gv}], s ) 3.13

In keeping with the assumprtions to derive the PNS
equationa from the Navier-Stokes Equations, the streamvise

viscous derivativea are omitted, which leaves:

[$& (Ei-€Gi}), &

+ [& (Ei-€Gi} + & (Ev-€Gv}], 2 3.12a

The Ev and Gv visccua vectors contain X and 2 derivatives which
muat also be trransformed ta § and 4. The
entire derivation may be found in Appendix A. The transformed

PNS equationa become:

Fi,§ ¢+ Fay8 = €5, + H 3.14

Here the notation is different to emphasize that the

tranaformation has been completed and H i3 still the vector

25

%

Wt kSRRl kit



containing the equaticn of state terms. +“The H vector is not

transformed because of ita algebraic nature. Other vectors are:

/pu.

puly, + &p
F,. = (1/77) U, + S p

(T/(y-1)+V®/2)4U,

o, \

Als + &Pp

Fa = (1/3J) vl + &p 3.15

(T/(y-1)+Ve /2) U,
\ 0 /

/ 0
HQU,Q + (Huu,;*l‘!x;v,;)/a

S = (u/J) | Maw, & + (Meyu,&*Mz2vw,$8)/3

Mo (T, &/ (Pr(y-1)) +uu, &+ww, &)
+(Myyuu, §+M;; wv, S
+My 2 (Wu, &ruw, $))/3

AN |

&u + L1 v

And:

c
"

Ue

&u + L v

H!I

-~

Maa = &°®




Mo = Meyy + Mz

Ve = ut + w,

J = Tranaformation Jacobian defined in Eq. (4.7)
The Jacobian is included to make the entire transformation

congervative.? This will be seen more clearly in Chapter 4.

Equations 3. 14 are to be solvéd.'?ﬂowever,'in preparation
for a later atébiliiyfanalysis, a differeﬁtial version of the

equationioilstéte ;nfroducéh'ih”Referende 1 must be noted:
8(P,§ + P,8) + oyp = 4T

Here © is'6 ‘small" numher. With this version of the equation of

state the final véraioﬁs of F{ and Fe become:

eU,
eul, “' &p
F, = (1/D ml, + &p

{T/(y=1)+V2/2)3U,

ep

Ala

APule + &p
Foa = (170) AMUe + & p
(T/(y-1)+Ve /2)ala

ép

-

S il Sl
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4.0 GRID AND GEGMETRY ANALYSIS

The viécoua vedge broblem q;early ihvolves a boundary

5 . | . layer. . The presence of viscosity impiies that the location 6:_
the shock is ﬁnknein ﬁefcrehand, un1ike tﬁe inviadid,hrobi;ﬁ. i
The uﬁock locus is found as the aolutian is-mérched.hlonglthév
vedge. Foi a shock fitting abproach; the'ﬁhack serves ag tﬁe.”
upper boundary of the described domain. A cdnvenient‘érid 1énohe

that conforms to the physical boundaries.

In order to solve the flow field numericglly‘dbnsidér'a
rectangular grid in a computational plane. Th;‘relatianéhipl'br
transformation, hetween the physical plane and the computﬁticnél
plane provides the metrica that were developed in Chaptér 3;0.

equations 3.12:

Su,6ry &y &

To perform the metrics analysis, begin with a general

ralation between the phyasical and computational planes.

This general relation has the form:

§ = §X,2) 4.1

&= (X, 2) 4.2

28




and servez as a mapping betwveen one plane and the other,

Figure 4.1 Physical Plane
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From the chain rule,

GE=X, DH(,x)Z, H(,2) 4.3

GLO=(X,D(x)+(2Z,8(, z) 4.4

Since the transformation is from the physical to the

computational planes, the derivatives (,x) and (,z) must be

written in terms of the derivatives (,¢§) and

(,8). Solving 4.3 and 4.4 simultanecusly gives:

Gx)=sJl(Z,8(,8)-(Z,8 (] 4.3

GZ)=2JIX, O GO-X, 0, 4.6

vhere the Jacobian of the transformation, J, .s represented by

J=1/0(X, §)(Z,H-(X,N(Z, €] 4.7

and appears in equations 3.15 and 3. 16.

Nov the general transformation of Chapter 3 can be

completed. By comparing 4.5 and 4.6 to equations 3.12 it is mseen

that the required metrics in term= of the physical plane are:

$ = 2Z,450) 4.8




‘l = -x. ;(J) 409

& = -2, ) 4.10

& = X, 6J) 4.11

Since the physical geometry is nonuniform vhile the
computational plane remains constant, these metrics must be
recalculated at each vertical (L) node at all streamvise (Jj)

locations. See Figures 4.1 and 4.2.

The final contribution to the grid transformation relates
ta fixirg Af and
AL since they are used to find
derivatives in the computaticnal domain. At each streanvise
station there are alwvays the same numnber of points vertically,

may LMAX. Since { goes from O to ), (Fig. 4.2).

A = 1/(LMAX-1)

The range of Z-coordinates in the physical plane vary with shock

layer thickness, but { is alvays mapped to the region C

to 1 vith equally apaced points Af

apart.




The § coordinate goes from § to

PN

faax, dependent on the start and ond of the physical

problem and the transformation. Therefore:

OF =(fuax~3a )/ (IHAX-1)

Where JMAX is the number of streamvise stations, the initial datsa
E station being station number 1.

A more node points are added vertically and
horizontally, the accuracy improves according to the accuracy of
the goverrning finite difference equations (Chapter 3). This is
in contrast to Reference 1 in vhich the computational grid
appears to hold Af and

AL constant at 1.0.

It remains to calculate the metrics using 4.8 - 4.11.

One could do so numerically by taking differences. For example,

(Equ. 4.10.

& = ~&xJ/NM

& =J(Zser, 025,00 748
Where J must alsc be found by differencing. Of course knowing
the physical grid locations at the j + 1 station in order to do

the differencing requires knovledge of the shock lncation. The
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shock prediction will be discussed in the chapter on bouadary

conditione.

If one knovs the specific correspondence betveen the
physical and computational planes, ag in equations 4.1 and 4.2,
the metrics wmay be found explicitly. For the vedge problem, the

g-id transformation is given by:

£§= X 4. .2

¢ *(l/e)msinh-t (sinh(a)(Z/Zanecul) 4.13

Equaticn 4.13 vas chosen to cluster the grid points in the
boundary layert. With an “s” value of 3.0 for example,
spproximctely 40% of the grid points lie within the boundary
layer. The "s® value can be varied to give the desired grid

clustering. Equation 4.13 can be rewritten as:

Z2 = (sinh(sf)/sinh(a))[Zsun(x)] 4. 14

Where Z.w i@ a function of X and hence (by 4.12), of ¢

also. By 4.12, 4.13 and 4. 14:

X, ¢ = )
X, {=0
Z,§ = (Binh(sl)/sinh(8)){2Z' eu]
Z2)8 = (8)(2¢n)(cosh(sl)/ainh(s))

34
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vhere subscript SH refers to the value at the shock and
Z2'an ® (254425 )an/b8

From the above formulae and equations 4.8 - 4.11;

; f:rs 2, &, and &

| can be constructed at each streamvise station and at each
E vertical rode as the solution advances in the streawvise

dir-ction.
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S.0 EINITE DIFFERENCE ALGORITHM

As we have seen, the non-dimenaicnal 2-D PNS equations

can be written as:

Fiof ¢ Fa,s = €5,0 + H S.1

vhere F,, F¢, 5, and H are vectors.

The nev scheme ia implicit and iterative which means that
the sulution is moved forvard in space from index j, say, to Jj+l
and then iterated in "pseudo time"* fraom n to n+l until it
converges (Fig S.1). The term "pseudo time" refers to the fact
that only the coanverged steady state solution has physical

meaning.

n=time index Lsvertical index j=horizontal index
Figure 5.1 Index Notation
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With reference to Figure S.1, the converged solution at
steps J and j-1 are used as the starting solution for step je+l.
At atep j+l, the solution is then iterated until convergence. At

step j+1 ve have:

(Fy)€ +* Fay 8 =2 S,8 ¢ H) 120 s.2

Since the method is implicit, all vertical L.-node grid values at
the n+l level are found simultanecusly in contrast to an explicit
scheme vhich would find the n+l values one at a time from the

already knowvn n values.

The above equation is not useful since the solution at
n+l is unknown -- the n+l level must be tied to the n level. 1f
ve agssume that the solution at level n+l is close to that of the
n-th level!, Taylor Series expansions in pseuds time for each

term in 5.2 gives:

Fodstemnet a Foisten o (Ad*tenpgnet) 5.3
Fglstemrel = Foittlen o+ (Agd*tanpgect) S. 4
Sictenet = Gieten o (MIst npAgeet) 3.3
Hi*temot = Hi®tun o (Agd®tenpgnet) S.6
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Where: Agr*! = qi*t.n*t = gqist.n gnd these

expansions are valid at each vertical node.

Avy Aey, Ae, and M are called the Jacobisn matrices, not
to be confused with the transformation Jacobian (Chapter 4).
They are S x S matrices since there are five elements in the

state vector. The Jacobian matrices are farmed by taking the

partial derivatives of the flux vectors with respect to the state
vector. The elements of the Jacobian matrices are given in

Appendix B.

i’ ¢

Substituting equations S.3 - 5.6 into 5.2 gives:

tF‘le.n * A‘Jol.nMnoll”
* [Fald*ten o Agdttinpqnet ], g
m€[Si*t.n + Nitlamnpgqees ], g

+ [HI®1s ™ ¢ pAittampgntt] 5.7

The streamvise derivative was given special treatmwment in

s~

Reference 1 so that the truncation error vould be
O(Aqnot )e
instead of

Qtagist)e

e in conventional PNS schemes.®:®:.13.,14,t3 Tt is preferakle %o
have temporal errors since they vanish for the converged

sclution.
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The streamwise derivative from S.2 becomes:

(Fy,8)i*t 0+t = (Fydrianet = F J)/708 + 0(AS)

s[A 3t Aqrr i+ (Fyd* o =F,3)1/7A5 + OCAS, (Aghtt)e)

gA.Jol.nAqnol/Ag +* (F"g)JOt.n

With this formulation of the streamvise derivative, equation 5.7

appears as:

CCAL 78 - Ag)(L m*1)
+ (Ag €M), E(Agr*1 )] 2.
= =f{F,,§ +* Fo,8 -~ €35,5 = Hl %1

= B It » 82Y S.8

Equations 5.8 and 5.7 are equivalent but 5.7 has been changed to
explicitly show hov the streamwise differencing is performed.
Equation 5.8 is accurate to 0(Agr*t)t in pseudo

time and is conservative in the limit of cornvergence.

It is convenient to call the right hand side of equatioan
5.8 G i+t for ease of notation. It is smeen that on the right
side all values are in terms of the n-th level, which are known,
On the left, the coefficienta of Aq"*! are also
from the n-th level. The problem is elliptic in the §

direction so central differences are used for vertical




differencing. Upon using a central differeance on the left of

5.8, the final form beccmes:

(A 788 = Ao X V" (&gnt)
+ {(((Ag=€EM)L., /(240 ) (Agn*1t)
= ((Ae=EM) L.,y 7(205))(LAgr*t ) }i*dem

=G4+t 5.9

Looking at 5.9, the block tridiagonal form begina to
appear. On the right, there is the vector G!*t-* at all
vertical . nodes. UOn the left, there are three matrices; one at
node L, one at node L+1 and the other at node L-1. The equation
golves for the vectors Aq . **t. Once
Aq.**! has been found with a block tridiagonal

solver, the new state vector can be found from:
qkjoi.not = q‘_,jot,n - Aq‘.,’ol.nol ‘5.‘10

Equatinsna 5.9 and 5. 10 do not address smoothing considerations,

which will be added in Chapter 7.




To illustrate the block tridiagonal construct a bit more

Clearly, set
A =2 ~[(Ag-EM)/(2A8) 1 -y d*t
C = [(Ae~EMI/(RL8) 1 ayd*te S.11

B = (A, /748 = Ag ) 3%t

Then the block tridiagonal equation appears as:

E R R O P |

ABC . .

. x . = . S.12

ABC . .

IS R PO B POy

Boundary conditions for the matrix operatione will be explained

in the next Chapter.

A remaining question is hovw to find the right side of

5.8; namely, the derivatives:
Fi,§ Fe, 4 S, 8
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As mentioned earlier, the { derivatives are modeled by

central differencing, i.e.,
o F¢.§_=(Feu.s-Fa¢-s)""”/(ZAQ)
S,5 a(S .1 =S )i*tyn /(205

The streamvige derivétive iz a one-point backward

difference as seen in the deveiopment hetween 5.7 anrd S.8:
Fe,§ = (Ft‘f"”‘FtJ)L/Ag

In all such differencing, the metrics are also included. 1In
differencing the viacous terms the viscosity coefficient is alsoc
differenced. Viscosity i=m determined by Sutherland’s Lawvw in

dimensional feorm:®
p = B(T¥’%) /(T + S) 5.13
vhere T is dimensicnal temperature and

B = 7.3025 X 107 1lbf/(ftsecR*’/%®)

S = 198.729R for air

The Llock tridiagonal form of equaticn 5.12 is solved
wvith a subroutine that was coriginally written* for an academic
subject requiring the asoclution of a block tridiagonal matrix made
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up of 3x3 matrices beginning at node 1. It was modified here to -

allow 3xS matrices and to atart ht node 2.

The biack tridiagonal form (35.12) in Referepce 1 vas
solved using stored forms of the inverse matrix. The scheme of
Referepce 1 computes new matrices in the block tridiagonal form
dnly at the first iteration of each atreamwise step. The current
code computes these matrices anew for each iteratioﬁ, before
solving the block tridiagonal matrix. This revised procedure does
not affect the converged solution but may change the number of

iterations required tc obtain the converged solution.

The tridiagonal solution advances the golution in pseudo
time only, from level n to level n+l. Once convergence is
achieved, the solution marches from level j to j+1 by some method
of prudiction. For example, either the newly converged j
solution becomes the first j+1 solution, or using solutiong at jJ
and j-1, extrapolation predicts the first solution at j+1. 'The
iterations take piace at nne streamwvise location rather than
globally over the whole field as in previous iterative PNS
schemesg.?®+'* This=s, along with the geparate equation of state,
makes the current scheme siéniiicantly difterent from past

algorithms.
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6.0 BOUNDARY CONDITIONS

There are three digstinct boundaries for the wedge
problem: The wedge surface, the shock wave, and the initial data

; plane. Each will be covered separately.

6.1 SURFACE

Five boundary conditions are required at the wall
corresponding to the five state variables. These conditions

are:!

1) Density consistent with equation of state
2) No slip conditicn for u velocity: (eu)y = O
3) No slip condition for w velocity: (ew); = O

4) Specified wall temperature, T, = 1.0 for Mach 3

and T, = 3.0 for Mach 15 flcw.
S) Zero preassure derivative in the body normal
direction, (P,8) = O
Hlere subscript 1 refers to a vall value and condition #5 is
Justified by a boundary layer type analysia performed at the
wall.! The true nondimensional equation of state is
¥p-AT = 0. However, as will be discussed

in Chapter 8, a modified equation of state is taken to be:

v - AT + 0(P,§+ P,£1 =0 6.1




Because of condition #3, at the surface this reduces to
(yp - AT + B8P, %) = Q 6.2

Where 6 is an "arbitrary" (small) parameter. For sufficiently
small 6 the model approximates the true equation of state if

(P, §)=0(1).

Equation 3.9 appliéﬁ at the first pocint awvay from the
wall (L=2) results in three matrices on the left and one vector

on the right-hand side:

A Agy + Balge + Calga = C: 6.3

Thia vector equation represents 5 equations for the S5 state
variables. Since the subscripts refer to specific nodes,

A, &g, is known from the boundary conditions. It

is not part of the block tridiagonal matrix which has the form

(see Equ. 5.12):

1w ..

A! Bl c. . = . 604

— —

Acwax-sBinax-y Aq/ \G/




where: B*y = By, + f£%A,)

G'unaz-1 ® Giwaz-1 = Cinax&Guunx
Since &q, = (gq"*' - q"), 1im unknown
| (specifically q**!), this boundary condition can be treated
implicitly, transformed to the delta form, and combined with the

Bs Aqe term,

A model for condition #5 is that the pressures are equal

at the wvall and the adjscent node.
P, = P, 6.5

It follows therefare that

Py

™
<

Ap, =Ap,
vhere 4Ap, is the fifth component of

&q. The 2locity terms are also etraight forwvard

e w0
-~ p.‘ LVt ‘_";':’."' o
K e i e

gince from conditicons 2 and 3:

&
> o

Atau), = Ataw), = O | 6.6

For the aT statl ‘ariable we have (from 6.2 and 6.95)

A(pT), = (m.*ep‘,g)““ - (‘Ypa*epapf)"

=/ rOpa, "' = (YPa*+Ope, H)"

a A(eT)a 6.7
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And finally,
ooy = (ApT) /Ty = (LAT)g /Ty 6.8

Combining equations 6.3 - 6.& gives:

/M \ /A(a’l‘h/‘r.\

Alau), o
Aqy = Ataw), - o 6.9
A(PT); A(FT).

SR

The elements of the A, matrix which multiply these
components of 4Agq: can be combined with the
elements of B:. which multiply like components of

Lfe, leading to B*, of equation 6. 4.

The A; matrix (Appendix B) is filled based on boundary
conditionas 1-5. The velocity components vanish, the temperature
ig given, and the pressure at the wvall is taken from the node
directly above the wall. Density is then found frcom the modified

state equation.

A = (P +{O(PI*2v =P, 3 )/7AL81)/T, 6.10
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6.2 Shock Boundary Conditions

There sre twvo parts to the shock boundary condition: The
location of the shock relative to the surface of the vedge, Zsw,

and the angle the shock surface makes with the freestream flow.

The shock angle determines the state variable values
acroas the shock and the location of the shock is used to
equalize mass flov. Since the flow is viscous, the boundary
layer will force the shock surface outwvard and at the same time
the shock angle may charge as a function of streamvwise location.

The algorithm must allov for changes in both angle and location.

"The values of the state variables at the shock must be
consistent with those in the interior of the shock layer. In
other words, the shock values must be coupled with the interior
values. To preserve thia coupled nature, the shock angle muat be

obtained from paoints interior to the shock.

One way to do this is to solve for pressure or density at
the shock based on interior points and then use the Rankine-
Hugoniot conditions to find the shock angle. Using backward
differencing, any value at the shock can be obtained from paoints

invard of the shock:

Liwax = Hlf uar-a = 2f narx-2 - funan-e *+ 4f nax-1) 6.11
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" XOW Wi D

vhere LMAX is the node at the shock.

Use 6.11 to find pew Or muw and the Rankine-Hugoniot

conditions to find the shock angle, 8. This shock angle will
therefore be consistent with state variable profiles calculated
at each iteration. Once Psw Or @« are found

remaining variables are found from the Rankine-ilugoniot equations
and the state equaticn. The velccities across the shock, uaw and
weau, are found from geometric considerations detailed in

Appendix C. On the first iteration, befors any profiles have
been calculated, either the shock pressure or deasity can be
extrapolated from upstream values vith a simple Eulerian
integration. The shock values found at each iteration become the

values at the n+i level.

The global mass conservation procedure considers a
problem separate from the shock value calculation and independent
of the coupled nature of the shock angle. The shock location
determines the maximum Z value, which determines the grid
distribution, which determines the metricsa. To begin this
routine, the shock location must be predicted vhen stepping from
J to j+l prior to any iterations. At each iteration the Z,.
position is adjusted to equalize masa flov with freolgrenm mass

flow.

The method used to predict the shock location is based on

a paper by Chausee, et al.” His method is written for a general

three dimensional system but here reduces to:




Zanict = Zyayd + Ax(tanfd) 6.18

vhere Ax is the streamvige step size. This
prediction is used only at n=1. At further iterations, Zuu«

adjustments are based on overall mass flov considerations.

The mass flov equalization cancept vas not part of
Chausee’s scheme. It vas suggested in Reference 1 since
Chausee'’s methad resulta in mass flow errors of & 2.0X.' Bhutta
and Levis suggest moving Z,« until wmass flov errors are less than
¢ 0.1%. Details of both the shock prediction and the mass flow

calculation are presented in Appendix C.

Referring back to equation 6.4, the shock boundary
cancerns the CLuar Agquuar®**! vector. And as in
section 6.1, the C.uax matrix is filled using the shock values.
Unlike the wvall boundary cendition, &Aquwax"*!® is
known. The newvly calculated shock values at each iteration
become q"** and the last computed shock values are q*. In thia

case Aguwax Can be formed explicitly:

OAguwaz*tt = (q"*' - q")lunax 6. 16

The right hand side of 6.4 is then corrected for this boundary

condition with:

Gumunz-r = Giwar-1 = Ciuax(AQuuax™*?t) 6.17
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6.3 ANITIAL CONDITIQNS

The initial data plane (IDP) is the starting point for
the numerical solution. Using the current nondimensionalization,
the IDP im at X=1.0. Initial values for all five state vector
components are predicted or assumed from the vall to the shock.
Initial data which together with the next j+l initial prediction
better satisfy the guverning equations (Equ. S5.8) result in

faster convergence for the first j+1 location.

In Reference 1 a blunt bady starting code was used to
obtain an initial condition for a blunt cone configuration; a
starting solution for the present viscous vedge flow vas not
avallable. Initial conditions were based instead on inviscid
flow wvith refinemen .s based on the addition of a boundary layer

and a mass flowv calculation.

Because of thig, the present initial conditions are
approximations at best for a "correct" vedge flow. Howvever, the
approximations are believed to be reasonable bamed on an .ssumgd
boundary layer that was 10X cf the initial local shock layer

thickness with a specified distribution from the wall tao the edge

of the boundary layer. Since the mass flov must balance, the
shock location and the state variable profiles vere then adjusted !

to match the freestream mass flow with that of the IDP.
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As a measure of the quality of the initial data, the
right hand side of Equatiocn 5.8 was monitored. The right hand
side is simply the governing PNS system terms written at tine
level n. A converged solution corresponds to a vanishing right
hand side to some acceptable level. The magnitude of the largest
component of the right-hand side for the first iteration after
the IDP indicates hov vell a consistent solution vaa achieved
with the initial data and the prediction at j+l. After setting
up the initial data, profiles vere smoothed to blend the region
at the top of the bhoundary layer. Figures 6.1 and 6.2 show
typical initial data for Mach 3 and for Mach 15 flov. The figures
are only a representation since Reynolds number vas varied and

therefore different initial profiles vere used for different

52




MACH 3

INIT DATA,

+ X ¥ A O 0O

a.%8

e

6. 32

0. 2%

©
“"s'
[- -]
o
e
[ -]
- J
U T T T T ﬁﬁ'—"“d
a8 *4 20 °4 @3 ‘e 043 08 1 08 ‘0 90 ‘9
NOHY .
a5 ‘9 830 03 ‘0 g1 210 509 Y
: .QT1 MOKY
et 31 €91 ws °t g5 1 18 TR
OHY
00 *3¢ 20 ‘21 00 '8 00 °9 00 ‘4 02'a  ee‘s
JOHY
00 °3% 00 ‘21 ve '8 90 °y 00 4 00 ‘3 009
£S5 3dd
05 '3 00 3 TR TR 0s'e TR

T




15

MACH

INIT DATA,

+ X ¥ A O M

w
[ )
o
] q < ™ X 2
- e
[ ] 4 | x
| .
[ » k Q
e
| ] [ ] L
P
[ ] [ 9 | ] 3 _.. N
h L L » =
g
{ | -
k .
: .
k e
9
[ -]
3’- °
T T T T =|"‘ e
0Q ‘g4 @0 ‘a+ 00 ‘3¢ 00 * 43 a0 '91 00 ‘s TE)
NQHY '
80 °a 50 9 100 g0 9 30 ¢ 100 X
MOHY
9s ‘8 o4 € 03 ¢ 80 ¢ 08 ‘3 09°3 043
: a4
T T T T T T _—
00 43 @0 ‘03 03 ‘91 00 3¢ ve ‘e 00 “h 00°0
10HY
0a :3 00 ‘93 00 '8} TR 008 90 ‘4 TR
o §83Md
03¢ 00 ‘0 09 '8 90 °9 DY *h 003 209
s _ ' HoYUW

Figure 6.2 Initialization Profiles for Mach 15




o g oS g X

ST

7.0 SMOOTHING

The final form of the finite different equations are
given by equation 5.9 with the right-hand side as in 5.8. Feor

simplicity, this can be written as:
tTi"Aq.*** = [RHSI" 7.1

vhere [T1* is the block trihiagonal matrix and [(RHSI"» iz the
right-hand side vector. The equation as it stands solves for

&qt** and as yet there is no amoothing.

"As stated in Reference 1 and by Schiff and Steger,®
cqhtrll differencing produces cscillatory behavior which must be -
damped. Since Equation 6.1 i= seccad order accurace in the

¢ direction due to the central differe:.cing, it is

possible to add a term of O(AQ)‘ az a

smoothing parameter without forﬁally affeqting the second orde;

accuracy.?

Reference 1 choases the form of this smootﬁing parameter

to be:
wlf(q*1) 1A 7.2

wvhere £ iz an appropriate vector and w is zome

conastant.
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Bhutta and Lewvis' chose the vector £ to be:

S o= KIAQ & (Aeq, &), 6 - ENG, &4 - Aeq, &I

" "and @ = 0. or 1.0 for no smoothing or amoothing.

- If 7.2 is added to 5.1 we obtain:

Fs,§ + Fa,5 = €S, + H

* of(Qitt)(AE

Subsgstituting for f(q“‘)'(andvuéing the disc.saion of Chagtcr S)

results in:

[Fy, + Au(-oq, BCADT) /41450

+[Fa + Ae(-wq, ZXAD®)Y /41574, 5

=€LS + M(-uq, ZIAN®)/410 g
SLH + Ao (=ug, BLASE) /4010
+Fd % 0laf (A7)

Now, detine the'quantityf

~ug, BIANN/4 ® @t - qivt o= Q(ADS

g0 that (Qi*d - i+t )® = Q(AS*

or, o second order accuracy:

7.3

7.5




qi*t = QI o« Q,H0AN*/4

Conasider a Taylor Seriea expansion of F, (@) around q:

‘Fy(Q) = F,(q) + F.,q (Q-q) + Fi,qq (Q-q)*/2 + . . .
= F,(q) + Ay (=-c7, 85(00%)

< OCAD

Similar conatracts can be obtained for F., S and H and in terms

“of an intermeciate solution G and Equation 7.5 can be written as:

Fii{Q)3*2 « Fe(Q)I*!, L = €E[S(Q)I*1], L + H(QI*1) + F,

Tre 1n£ezmediate gczlution, &, is related to q by Equation 7.8.
! Compaéing Equatinn 7.9 tc the development in Chapter S, we can
E ‘ aee‘ihat 7.9 in termn of Q@ can be handled like 5.8 in terms of q.

In other vordse, the governiny equution car nov be written as

[AAGR** + BAQR*! + CAQM*114%1 a Gudsten

shere A,B,C a.e the tridiagoral matriceas, or

[(Til~&G~*+t = [RHSI" 7.11




This is the equation to be coded and solved. Once
AQI*tvr+1t {ig calculated, Q/*t+"*t yould be found

from*
@I*tinet = QI*tI.n 4 AQI*T. et 7.12

and once @*t:"*! ia found, the real solution q/*!+**! would be

found from 7.8 as:?

qQuittr*t ® [w(@Ley *+ QL. )/4 + (1-w/2)@  JI*2s et
7.13
When msolving the block tridiagonal form of 7.10 or 7.1},
the solution i=s in terms of the vectors AQ"*!,.
The solution at level n, which is used to calculate the right
hand side of 7.10, is in termsa of the true solution, g. The only
term that ias known is AQ"*!, the solution of the

tridiagonal matrix.

AQ**t* must be changed to
Aqh+! before it can be added to gq*. In other
vordse, AQ~*! is smoothed to Agt-*!?

vhich is then added to q" to obtain the upgraded solution

l qn’l - qn + Mnol 7.14

S8
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This is very similar to 7.12 but with Q@ in place of q. If
equation 7.13 at level n+l is subtracted from the same equation

at level n, the fallowing is obtained.

ml-‘."“" .W(MLog le_‘)J¢l.n01/4
*L-/2) AR IS 1ot

7.15

Aqn*! is nov in terms of AQ~*!
vhich is the actual result of the tridiagonal smolution for use in

Equation 7. 14.

Equation 7.15 is used from nodes L = 2 to LMAX-1l. Care
is needed at nodes 2 end LMAX-1. At node LMAX-1,
.., is AQ at the shock. At
node 2, Ad.-.; is AQ at the wall

and both muat be accounted for.

At node 2, as vas shown in Chapter 6:

iV N A(AT ) /T,
AlCpu)y (o]
M., =| ACow), = v
A(HT), A(AT) e
1 Ape
At node 2 then, Equation 7.15 becomea: (For components 4, 3)
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ML"""“ 2 (@ o174 + (1=-w/4)2Q 13+t net 7.16

For component 1, Al -:. is the fourth component of
{ LNy, divided by wall temperature. For componenta

| 2 and 3, 7.15 remains the same.

[ At node LMAX-1l, as was also presented in Chapter 6:

AR 1™t = Miwax™*?! = Quuaz™*?! - Quuax® 7.17

This is known at the shock and substituted into 7.15 during

smoothing.

The calculated AQ**! in the tridiagonal
algorithm becomes the basis of convergence. If all
HAr+t approach zero, the solution at the current
J*1 node is converging properly. The criteria used here wvas that
all 2AQ0*** must be less than or equal to 0.000.

before moving on to the neéxt streamvise node.
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8.0 T J v YSIS

Since this method is implicit, it is expected that for
reascnable step sizes:
Lx or Af
the finite difference algorithm will be uncouditionalliy stable.
In Reference 1, the step size variationa vere said to he relataed

to changes in grids, shock propagation accuracy and solution

ﬂmw_ﬂ

convergence rates:. No detailed algorithm was given. Hovever,
the stability considerations to be discussed here are not related
to the discrete diff=rencing but to the actual physical nature of
the problem, i.e., has the current formulation eliminated the

elliptic (subsonic) region of the domain? 7
Recall Equaticn 5.7:

CF 4+t & Adst.mpgnet] ¢
+ [Fad*tem o Agdvtampgqret ],
=€[SI*te» + MIct.m gt ],
+ LHI*tvm + AgdetonAgeet]
8.1
Where A,, Ay, M, and A; can thearetically change in both the
§ and { directions. Nov assume, as in |

Reference 1, that thes=s coeificients are frozen. This is

reasonsble if changes from n to n+l are not large. The above

@quation ig nov:

|

|

1

|
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.!Mp‘ * IoM;C
-€mAq, & - melg = G

vhere a,, a, m, and a, are frozen.

As a further simplification,! examine the viscid and
inviscid limita separately. Equation 8.2 is too difficult to
analyze as is. The inviscid and viscous limits are simpler and

may be analyzed neplrltolyf

8.1 INVISCID LIMIT
The inviscid limit of 8.2 can be written as
2,.48q,§ + me2q,4 + K(2qg,6,8 =0
The =stability analyais of the asystem of equations nov requires
that the inverse of a, be formed and multiplied throughout
giving:

Af.§ + 81" '@:lg,8 + @1"'K = 0 a.3

The eigenvalu2as of the a.-ta, matrix now deterwine the marching 5

stability of equation 8.3.! Even though 8.3 is a much simplified
vergion of 5.9, it is a form suitable to mathematical analysis.
If 8.3 is stable then the full equation may also be stable; if

8.3 is unstable, the full equation certainly will be unstable.




As a further simplification, assume a rectangular grid

for thias analysis so that the metrics become

& = 1 1 =0
& =0 @ =1
J =1

The state vector is unchanged.

i Introduze the following differential equation of state:?

w - AT + 8(P, 4 « P, =0 8.4

Thiz becomes a generalized fifth equation in the aystem az was

discussed in Chapter 3. Without 8.4 the F, and F. vectors become

Au
Mt + p
F, = AU+ D
(T/{+1)+V2/2)pm

o)
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The matrices &, and a, are formed from the partial derivatives of
the flux vectors with respect to the state vector (Appendix B).
An eigenvalue determination requires the inverse of a,
and multipliqation by that inverse. Hovever, the last rov of m:
consists of zeros since the last component of F, is zero so the
inverse of a, is undefined. To circumvent this, Bhutta and Lewvis

invented Equation 8. 4.

Using 8.4, the fifth component of F, and F. becomes 6p

(Equations 3.16) and the last row of a, and a; becomes

Nov the inverse of a:, can be formed and the eigenvalues of wi~?!a.
can be found. Although Reference 1 indicates that 8.4 wva=z not

used in the actual computer code, a subsequent paper by Bhutta

and Lewis!! does show solutions for Jdifferent values of 8 and

seems toc indicate equation 8.4 vas included. This explains the

inclusion of this equation of state. The intent wvas to

i
|

|
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investigate different values of 6 and ita possible effect on the

solution.

The eigenvalues of a;"'a, (based on 6>0 but for the limit 6

% approaching 0) are:
1, w/u, w/u, w/u, w/u 8.3

Reference 1 incorrectly indicates zero in place of unity. The

f eigenvalues of the 4 x 4 matrices, i.e. without the equation of

state as the fifth equation of the formal systam, are:?

w/a, w/u, uw 2 a(ut +yt -~ gt )t/2/(yt - gt) 8.6

The essential difference, of course, is that in 8.5 the.
eigenvalues are always real so that hyperbolic/marching behavior
is indicated. In subsonic regiona, the second set of eigenvalues

(Eqn. 8.6) become imlqinlry and elliptic behavior is indicated.

Aassuring for the moment the analysis of Reference 1 is
correct, the nev scheme appears to be stable for marching. In
contrast to previous PNS mschemes wvhich make pressure assumptions
in the subsonic sublayer to eliminate the insatability, the new
method requires none. In other vords, even though the same
physical problem is solved by bcth wmethods, mathematical

roformulation seems to grant stability to the nev scheme without

&3
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any assumptions in the 6=0.0 limit, for wvhich the 8.6 eigenvalues

are to be expected.

8.2 YISCOUS LIMIT

In the viscous limit, equation 8.2 becones:

I\M,,‘EMAQ."K‘O 807

Using the same @ rationale as in the inviscid limit, the viscous

eigenvalues are!:

o, 0, 0, 3€p/{Prau), 10€Ep/(3m) 8.3

In previcus PNS schemes the viscous eigenvalues

aret

o. 4"/ ( am ) » (- £ [ Ta

Where

Ga.a= R/(23(ut -a2 ) ) {((u+D/(uE) )2 (u+D/(uE))®*-4D/E]J /8

D=yt ~a* E=Prp/k

and: k = coefficient of thermal conductivity.

The discussion concerning marching stakility is rimilar tc

that for the inviscid limit. The only difference is that




positive viscous eigenvalues require posifiya,pévalncity
comﬁonénta. This says that reversed £loy”ia'uﬁatabla,,in'

%' '“ agreement with acceptéd practice.
8.3 'DISCUSSION AND ANALYSIS

To-thia‘baiat tha'fesultavand eigenvalues may seem b
aurpriaing given'ihat mathematical reformulation seems to remove
the marching instabiiity when 6=0. The analysis vas first
prasanted in Reference i and.the resulta‘af equation 8.5 check

mathematically. Whether or not such an analysis was juatified

will b2 examined here using a small perﬁurbation and linear

stability annlysis.

Stability for the‘mixed differential/algebraic system of
Equation 8.3 is unclear since 370 implies that the necessary
matrix operations for eigen#aluea are undefined. When 6 i=
'included to farm a totally differential systewm, the 0 appfoaChing
0 limit dces not yield the correct eigenvalues (Eqn 8.6). There
is a paradox involvingvthe parameter 6, presumably related to the
singular perturbation form of the modified state equation. This

reasoning leads to the following analysis.
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8.3.1 Small Perturbation Analygis*
Conasider a siﬁpla model probJém vhich appeared inf“

Reference 11:

Uy = Vy = 0
Vg = Uy + 2vy + wy = 0 8.9

Equation 8.9 loosely approximates and is representative of the

governing PNS equations wvith a modified (G>O)Aequatinn of =mtate.
If € = 0 8.9 is equivalent to
Uy = Vy ' = 0
vy + (a%®-1juy + 2vy = O ‘ 8.10
vhich can be written as

qr + Aqv = O

vhere 3 = [u,v]T and

—— i —— e b e e e

* Suggested by Dr. Judson R. Baron and.Dr.'Saul S. Abarbanel
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' The pigenvqluesmoizA'érnz

‘and are imaginary if e > 2.

- The eigenvectors are:

' The e¢igenvalue=s are real and have no "time .like" constraint.

» sea’) after Rhutta and Lewis used their 8 not equal to zero t

eigenvalues vhen € = 0 and € approaches zero must be identical?

L
L.

M. W LE(2-at)id o 8.11

3
t

e = [1, ~m1" , @ = [1, =17

'1f € ia not zero, the migenvalues of 8.9 become

o5

At Y
Rk v

M.2.3 = 0, 1:(2)t/8 B 8.12

and the eigenvectors are:

e
e e o £

91=C1,0,1]T ’ e.’tl, "x.'o]‘r » e;’[l,-u,O]f

\ p‘%

Similarly; the eigenvalues of Equation 3.5 were unconditionally

ggsumption to allow matrix inversion and took the limit as 6

approached C.O0. "

The preceding di=zcuasion confirms the Bhutta and Lewis
algebrc leading to 8.5. The eas=ential point is that the :
eigenvalues appear to be independent of € or 6 even though € or @ 3
cannot apriori be mset equal to zero to find the eigenvalues.
What are the proper eigenvalues as € or 6 approach zero in view
of the differing results of 8.11 and 8.12 (or 8.5 and 8.6)? 1Is=s

it not necessarily correct on physical grounds to assume the

€9
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Consider the implications of assuming a regular
perturbation based on‘e. First, differehfiate the”-ecand
equation of 8.9 w.r.t. x and the third v.r.t y. Eliminate wyy to

get:

Uy “er"". .o = 0

Vix = Uvrx * 2vyy * (atuy - wy2/€ = O

.

Then with wy from the mecond equation and uvyx from the £i£$t

eﬁuétion of 8.9:

Uy = Vy ' = 9

Elves = Vev + 2Vyx] + @%Uy + Vx =uy +2V, = O .. '8.13

‘Aggume & regulé; perturbation, say:

v

3y = 'ﬂo - eu‘ + e‘ u. T+ s a

v = Vo + EV‘ + e’ v. * s 8. 14
and examine the eigenvalue basis for diffsrent orders of €.

‘Substituting 8.14 into 8.13 and collecting terms

according to like powveras of € givea:

(s}
1)
n

Uoy - Voy = O : ~ 8.15a
Vaus = Uny + 2Voy. + A%ugy = O
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pier) : Urx = Wiy = 0

Vig = Usy. + 2Viy *+ A%,y  2-(Vogx—Vavv*2Vaxv! 8.15b

Oces )' © Udx " Vev =0
Vax - Uey. * 293; + atugy "(thx“vxvv*zvaxv) 8. 15¢c
and so on.
Thuas, in geneval, for O(E~}, ‘each met of equations can be
written as:
L¢ge) = R(va.y)
vhere tha'L operator is idénticai for the equations of all

crders.

The point ig.that if the introduction of € allows a
rsgular:pértutbation as in 8.14, the eigenvalues should be
identicel for ail”orders of'E, including the zeroceth order. The
Bhutta and Lewis eigenvalues are not identical for either the
model (€ = 0,«l1) problem 8.9 or the actual (6 = 0,«]1) problem

5. 9.

It must be concluded that the Bhutta and Lewis
eigenvalues are inconsistent. The normal subsonic sublaysr
instability remains in the PNS equations. Solutions conatructed
vithout any modifying assumptions to this sublayer should break

down due to this inatability.
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8.3.2 n tabil nal *

Bhutta and Lewis erred in their inviscid stability
analysis since in Eqdation 8.3 they did not consider the term
K(Aqg, §, 4), which is also a
function of the state vector, must also be included in the

stability analysis.

Rewrite equation 8.3 as
Aq. + Bq, = Cq
vhere q = [fu,w,T,pl'. Using a linear Fourier

stability technique, set

nge‘(ul +»1ly)
Then

det(kA + 1B -iC) = O
Here the A and B matrices are the partial derivatives of the X
and 2 flux vectors with respect to the state vector above

(Appendix B). The C matrix i= the partial derivative of the

state equation vector, H, with respect to q above.

* Suggested by Dr. Michael B. Giles
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On evaluating the determinant it is found that

either
_k * (i/8)Cut-a*}/u?

vhich is unatable if M<l
k = fuwl & (Cavl)® ~ (a® - ut)ele)t/n|/(at-ys)
1 = fuv ¢ a(u® + v* - at)l/(ar-ut)
vhich are unatable if M<}1
The conclusion from both this and the previous sgection
8.3.1 is that the Bhutta and Lewis method does retain the weak
elliptic region in the subsonic sublayer. Unless appropriate

measures are taken, their method should break down at scme

dovnstream location.
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- 9.0 RESULTS

Based an the conclusions of Chapter 8, the present scheme
ahou;d prove to be unstable at some point dovnstream. Hovever,
the itarative aad added equaticn aspects of the scheme make it so

much different than previous PNS formulationg®:®:»13.14,183 that

the ;n:taﬁi]ity may manifest itself in different ways.

In order to test the performance of the present code over

the wedge geometry, cases were run at Mach numbers 3 and 15 and

Reynolds numberé ranging from approximately 4x10! to 1xl107 at the
ICP. ‘freestream data corresponding to 80,000 feet altitude was
uséd,when dimensional temperature was required in the Sutherland
law, and to‘define a typical reference length from Reynolds
number. ‘The Mach number, Reynolds number and Prandtl number
completely define the air flow, irréspective of altitude and are

the only relevant inputs. A Prandtl number of 0.72 was used.

The results of the numerical tests are summarized in
Tables 9.1, 9.2, und 9.3. These tables represent a progression
in grid clustering. The results in Table 9.1 were carried out on

an evenly aspaced S50 point grid with the first node point 2.0% of

the shock layer thickness from the wall. Table 9.2 used a
clustered SO point grid with the first node point 0.6% from the
vall, Table 9.3 used a cluastered 100 point grid with the first

node point 0.3% from the wall. The clustering parameter, 8, cf
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Chapter 4, wvas 1.0x10-?*¢ ifor Table 9.1 ond 3.0 for Tables 9.2 and

9. 3.

‘ The progression from smooth to clustered grids vas
selected sc as to obtain general performance characteriatics of
the scheme. Certain casea were chosen frum Table S.1 and rerun
on tighter grids to obtain the resulta of Table 9.2. In this
manner, similar cases were comparable with respect to their
performance covering goneril characieristics over the entire

shcck layer to very specific detail within the boundary layer and

in particular within the subsonic sublayer.




ALL VARIABLES RECORDED AT INITIAL DATZA PLANE

| CASE  MACH RE. Zat A 5o #STEPS FINAL
i NO. : Zen X
1 3 1.6x10° 0.04 0.93 0.C13 = >150 = 5.5
2 3 2. 3x10° .10  0.03 0.021 18 1.54
3 3 4.3x10° 0.21  0.03  0.045 10 1.30
4 2 9.7%x10°  0.05  0.03 0.017 70 o a.z21
s 15 " 3.8x10° . 0.05 = 2.03 0.0003  >100 . 4.00
6 3 1.6x16°  0.04  0.001  0.013 17 1.017
7 3 1.6x10% 0.04 ~ 0.0n 0.0i3 47, 00,01 1.047
8 3 1.6x%10° 0.04 C.001 0.013 69, 9=0. 10 1.069
9 3 1.6x10° 0. G4 .06 0.G13 a2 5. 92
10 15 6.0x10% 0.04  0.06 0.0008  >100 7.00
11 3 1.6x108 0.04 0.10  0.013 50 6. 00
12 3 1.6%10% 0.02  0.10 0.013 51 6.10
13 L5 1.1x107 0.032 0.03  0.0002  >160 s. 80
14 15 8.9x10* 0.10 0.03  0.00C8 15 1.4%
15 15 1.1x10° 0.25  0.03 0.00128 3 1.09

TABLE 9.2 S0 POINT CLUSTERED GRID REZSULTS

16 3 1.6x108 G. 04 0.03 Q. 006 10 <. 30
17 3 2.3x10* 0. 10 0.03 0.019 8 1.24
18 3 4.3x10? 0. 21 0.03 0.03 1 1.03
19 3 4.8x10* 0. 07 0.01 G. 0125 30 1.30
20 3 1.5%x10% 0.04 C.01 - 0. 006 30 1.30
21 3 2.5x10¢ 0.01 G.01 Q. 004 »100 2.00
22 15 6.0x10* 0. 04 0.001 0.00017 12 1.012
23 .5 6.0x10¢ Q.04 0.0001 0.00017 >»55 1.0055

TABLE 9.3 10C POINT CULUSTERED GRID RISUL

24 1S €.0x10¢ 0. 04 0.0G01 0.00015 5S 1.0033




Au'tne grids heccme increasingly clustered near the wall,
thivapparont b&ight oZ the aubaonic layer changes slightly for
equivalent naundary layer thicitnesseas. This ims due, of course,
to correspanding aoce location changes near the wall as the
"number of nodeg increszmes. Cases 1, 5, 10, 13, 21, and 22 all
could have auntinued for a larger number of stopa than indicated.
That doe§ not mran thst an evantual bresk down is avoida:tle. For
example. cuse graups (1, 2 and 3) snd (13, 14 and 15) show the
regulting hehavior for increasing boundary layer thicknesa with a
conatant step size. Cases 1 and 13 vere concluded at a
sufficiently large X such that the informatiocn gained shoved a

trend.

Figure 9.1 shows a pict of the number of marching gsteps
before breaking down versue the height of the initial subaonic
layer for Mach = 3 and a stepsize «f 0.03. Figure 9.2 is a
aimilar plot Xor nach number 15 and stepsize of 0.03. The saue
results are evident in cases 16 through 21. A dramatic riae
occurs in the number of possible steps at conatant atepsize a=
the subsonic layer decreases. The @axponential like bzhavior as
the subsonic layer shrinka suggests an unlimited number of steps

would be achievable for an inviscid flcw.

Cases 9 and i0 provide related information. All othe:xr
things being equal, th? asoluticn can be wmarched farther
dovnatream at high Mach numbers becauss the subsonic layer ics
smaller. This is apparent in cames 4 and 5 as well.
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It ia interesting to compare the sclutionas for Mach 3 and
Mach 1S in cases 1 arnd 13. Figures 9.3 and 9.4 show the profiles
of state variables and Mach number acroass the shock layer at 150
ateps for Mach 3 and 135 respectively. Notice haw skh~rp the
trnnlitioﬁf;ono betwveen the boundary layer and the inviscid
external luyer has become vhen cocmpared to the initial data

(Figs. 6.1 and 6.2).

Figures 9.5 and 9.6 shov the right hand side of the
governing egquations (Eq. 5.8) versus vertical node. In both
cases the energy equation showse the larée.t depariure in
magnitude from zero, followed by the X-momentum equation. Recall
that the right hand side shculd appronch zerc in the limit of
convergence at each atep. A nonvanishing r.ght hand value at any
node indicates the extent to vhich the gaoveraning equations are
not being satisfied at that node. Typically it was faund that
the right hand side was of 0(1) fo:r the first iteration of the
firat streamwise step after the IDP and becamo smaller proceeding
in the stramwvize direction until the scheme bioke down. The
largest values remain within the houndary laye: and are cauased

primarily by an inconsistent set of initial conditions.

Figures 9.7 and 9.8 show the shock surface and wall
pressure for the two cases. The inviscid shock has been added
for reference. The large jump in wall pressure could be

attributable to errors in the initial pressure. Finally, Figures




9.9 and 9.10 are enlargementa of the boundary luyer regions for
the two ceuses. In both cases the reversed density gradient
should be noted and in Figure 9.9 note that the mu

grldiqnt 1.\laa-oning and eventually reversed flow must be

anticinated.

In fact, it vas found that independent of the break down

location, the sheme umually bLroke down in a similur wav. Figures

' 9.11 through 9.17 trace the dibolcpmont cf case 4 for selected

dovnetream locations (X = 1.12, 1.30, 1.90, 2.80, 3.10). Notice
particularly the behavior of e and ea.

At step 30, Figure 9.13, the density has a sharp gradient and the
su variable has less of a gradient near the wall,

Steps S0 and 70 show the u-velocity approaching separated flow.
Figures 9.1% and 9.17 shov the right hand side values (Equ. 5.8)
for .ytepa 60 and 70 after thay have converged. Notice that the
magnitudes in Figure 9.15 show that the governing equations &re
being satisiied wvhile those in Figure 9.17 indicate that the
soluticn is beginning to break down. In the same menner axll
cases but one which become unatable do moc by cenverging to
seperated flov., Tigure 9.17a details tne houndary layer at the
onset of reverased ftlov for Case 20. The large'donsity spike is
characteristic of the solution wpproaching sepavation. The
governing equations remain satisfied until the break down i3

imminent.

79




QUG AR R N A N L R0 R AN LG Y R ELER A Gl B B R L

Figure 9.18 shows the distribution cf preasure ac:css the
shock layer f{.or case 9, which also converges to separated flow.
The profiles are plotted at stepa 2, 4, 8, 16, 32 and 64 down the
vedge (X=1.12, 1.24, 1.48, 1.96, 2.92, 4.84). Figure 9.18a is =
blowup of 9.18. The profile at atep 64 (X = 4.84) ia approaching
the pressure profile of Figure 9.3 which had gone 150 steps with
a slightly higher Reynclds numher. This seems to ahov that for
nearly identical initial conditicna, the scheme predicts
consistent sclutio: s indeperident of the two different streamviae
at:hlizen used. (4v=0.03 in Figure 9.3 and

Ax=0, 06 in Figure 9.18).

.
o Another interesting phenomenon is observed with an

u?.tnblo Ax. Consider case 6. This la tha only

'=ase that did not break down due to flcw separation. Figures

$.19 and 9. 19a show that m is 10t tending to;ard a

decreasing gradient. It iz also interestiny to . ote that the
errors are at or belov the sonic line, which is shown for
reference., A poasible rsason for Lhis ias suggestad ic Chapter
10. Fi?uro 9.20 shows the growing magnitudes of the right hand

gide of the governing equationas (Eq. 5.8) for case 6.

Finally, consider came 24 of Table 9.3. Recall that this
result was obtained on the moat clustered, 100 point, grid.
Previoua PNS schemes®:1!3:.!2 have documented the phenomenon of
departure solutions. Departure behavior is found in PNS codes
that do not include a pressure assumption and is characterized by
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an exponential drop in wall pressure associated with the subsonic
ellipticity. Figure 9.21 showa the wall pressure distribution
for case 24 and Figure 9.22 shows a u-velocity component profile
for two downstream X locations. Both figures are consistent with
previously demonstrated departure hehavior¥:!3:1!3 jncluding the
rapid development of the pressure drop. Figure 9.23 shows the
right hand side distribution from equation 5.8 and indicates that
the largest errors appear in the energy equation. This again is
congistent with departure behavior?: t3.13, Figure 9.24 displays
the lower portion of the shock layer at departure. Note the
la..ge negative gradient in aw. Compare this with

Figures 9.25 and 9.26, which are from case 23. The only
difference between the two casesa is the grid clustering. They
are displayed at the same downstream location, X=1.0055. Despite
this, case 24 indicates departure while case 23 does not. Note
particularly that the i.cgative pw gradient exists in

Tigure 9.25. But the pressure and energy behave quite
differen:ly than those in Figure 9.24. This is consistent with
and ar.?ars to validate the claim of Reference 15 which states
thiut mesh spacing and astepsize must be of O(Re-3/%) or less in

order to pick up departure behavior.

The indications from cases 1-5 and 9-23 is that even when
classic dcparture behavior is not evident, +he instability
manifests itself by converging to £ .,arated flo-'. igure 9.27
snow:s che right hand side distribution from equation 5.8 of case
23. 0Of importance is thai even though departure behavior is

8i
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suppressed errors do grovw in the energy equation, which is

conzistent with case 24.

Figure 9.28 provides a last comparison. Pressure
distribution profiles in the lower part of the shock layer are
shown at diZferent X locationa during departure. Notice that as
the solution marches downstream a pressure disturbance moves
outward away from the surface in the shock layer. This may be
compared with the behavior in ?1gure 9.17, which was run at Mach
3 and also exhibits an outward moving pressure wave. Figure 9.17
represents a somevhat more stable solution since as the solution
marches downstream, the pressure tends towards constancy and is
consigtent with known wedge flow. Pressure in Figure 9.28, on

the other hand, moves avay from constancy but the underlying

instability in both cases poassibly induces similar behavior.

The cases shown have been selected because they provide a
repregsentative characterization of the behavior of the current
scheme. They appear to imply that the schema@ is unstable, that
it is unstable due to departure behavior, and even when classic
departure behavior iz nct evident due to grid sizing or step
size, the underlying instability causes convergence to separated

flow.

The results sre not exhaustive but they do serve to
outline the pevformance of the current algorithm. Because of the

iterative natuce of this particular algorithm (Chap. 3) the



classical PNS pressure modeling could not be included. Several
of the previous sublayer assumptions were mentioned in Chapter 1
and it would have been informative to use similar sublayer

asgsumptions in the current scheme, hoping to achieve a stable

algorithm.
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Figure 9.9 Boundary Layer after 150 Steps at Mach 3, Ax = 0.03
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Figure 9.14 Case 4 Profiles, X = 2.80
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Figure 9.19 Case 6 Profiles, X = 1.017

104

\

1

1

4

[]

90 '8 ’s '3 00 '3 TR YR s ""e i
\

|

|

{

|

i




o.%8

[ ]
*»
e
X
a
— A
- e
5 =
a P -
= te
W Mol M
-
Pas ~
@ .
- e
n ‘
z /\
o H
[N
) \ .
8 ) °
a8+ " PR '3 09 "1 ey e
o NOHY .
e e’ 0. o\ 'y- TR e YR
p MOHY
"3 T o0 2 TR TR ot TR
* (0] 7}
’ e TR °e '3 02 TR R TR
% 10HY
TR 23 003 't 091 o't TR
+ £S3dd
a0°'g s 3 00 '3 e TH e 0"
HOWU

Figure 9.19a Blowup of Case 6§ Profiles

1038




UNSTABLE DELTAX

* A O 0O

36. 88

a
[ ]
|-
*
3
E
[}
[ ]
Lo
[, ]
[ ]
[ ]
L >
N
3
a
. }
)
-
'8 ee'e- sWo's-  ®8°0- 3 e- st 'e- TR
SSHUW
'y 004 °e 3 TR 90 ‘a3- 00 4~ .-
UALNIUOUW X
w9 "e vi'e TR 00 ‘0 03'e- o 0-
UALNIUQU 2
a0 ‘s 004 090 09 °4- 90°3-  Qe'3l-  90°'91-

ASY3INI

Figure 9.20 Values of Governing Equations for Case 6
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Figure 9.24 Departure Boundary Layer Profiles, Case 24
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10.0 CONCLUSIQKS

The Dhutta-Levis Algoriihm (Ref. 1) behaves in an
expected vay for PNS achewes that do not make specific sublayer
assumptions. Of particular relevance to this wvork in reaching
this concluaion are References 13, 1¢ and iS. The latter
specifically address the role of PNS modeling and related
questions of warching, departure behavior rnd stability for PNS
equationa. They particularly discuss in some depth the use of
the streamvigse step size to aovercume wveak ellipticity. The
present analysis uses step size as a vay to characterize the

behavior of the Bhutta-Levis® approach.

Th> results of Chapter 9 indicate that the algorithwm
converges to and breaks down by approaching a separated flow
condition. This is in agreement with the results of the
stavility analyses of Chapter 8. Exponential departure behavior
may not he apparent unless the grid and stepsize are sufficiently
swall, but the departure behavior is manifested by convergence to

separated flow.

Recall from Chapter 5 that the tridiagonal algorithm
procedure is associated with psuedo-temporal steps (iterations)
rather than space.. Therefore the stability analyses of
References 13, 14 and 135 which involve implicit space steps are

not applicable. Hovever, it is reasonable to assume that the
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current iterative approach amcunts to taking the same atep size

repeatedly and step size Jdoes then characterize the behavior.

A minimum streamvise step size is related to the height
af the subsonic sublayerx.:?:.1¢.:% The relation developed in
Reference 13 ias:

&x/8q > L/m
vhere §, is the thickness of the subsonic layer. The larger the
elliptic zone, the wmore restrictive on accuracy the above
condition becowes.!?® This explaina the results of Case 6. Also,
it is iwplicit that stable solutions are more easily achieved
with high speed flows in viev of their relatively smaller

subsonic layers.

This behavior is consistent vith the findings described
in Chapter 9. The algorithwm will msarch downstream vhen certain
conditions are wmet. Only if the subscnic layer is sufficiently
small, e.g. as in the 4% or SX boundary layer cases of Tables 9.1
and 9.2, is stability evident. Larger boundary layers can be
marched with higher Mach numbers because the subsonic layer
remains small. This agrees vith References 13 and 14. 1In fact,
vhen this condition is wmet, a rather large step size of 0.06 wvas
used successfully. Smaller step sizes of order 10°* or 10-* also
work and step sizes of this order have been used by
others.*:%:13.14,183 T¢ must be concluded that the Bhutta-Levis
algorithm (Ref. 1) behaves in the same manner as was to be
expected for PNS schemes without sublayer assumptions.
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It should be noted that the hypersonic similarity

parameter
Me/(Re)'’®

vas the bsais here for selecting specific Reynolds numbers
(Chapte: 9). At NMach numbers 3 or 13, a wmatch of the hypersonic
similarity parameter to that of Bhutta and Lewis’ original paper
(Ref. 1) implies a boundary layer thickness exceeding 20X of the
local shock layer thickness. According to the aformentioned
stability asnalysis,'?® this should scverely reduce the allowvable
step size. Indeed, the current research failed to march low
Reynolds number, viscous flovs vith large boundary layers any
appreciable distances downatreaw. Bhutta and Lewis, hovever,
developed the current algorithm to solve lov Reynolds number
flovse and vere spparently able toc march largr distances

downstream.

One portion of the Bhutta and Lewvis algorithw which the
current vork did not duplicate vas variable step size. In
Reference 1, results indicate that the step size begins with
0(10-*) and ends with 0(1). Other documented parametera of the
Bhutta and Lewis algorithm have been duplicated and tested and
huve been showvn to not ensure marching stability. Since the
current vork agrees vith past references on the importance of
streamvise step size, it may be that variable step size enabled
the instabilities to be supressed. This is consistent with the
fact that successful marching vas indicated with high Reynolds
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number flows vhere the boundary layer and subsonic layer
thickneases do not grow appreciably with downatream distance. As
the boundary layer and subsonic layer grow in a viscous flov, the
step size apparently must increase to maintain stability, as

implied in Reference 1.

Nevertheless, the scheme has been shown to be unscable.
Therefore, in order tc march successafully, some parameter or
parameters in this scheme must be adjumsted to allov for marching
satability. Unfortunately, tii® parameters which allov marching
stability vere not discussed in Reference 1 and no reference vas

made to the characteristic instability of the scheme.
The role of the differential wmodification of the equation

of state is also interesting. Recall that the modified equation

of state:

s “p * 8(P,§ + P,{ ) =T

) vas used to replace the true equation of atate. For meost

calculations 6 wvas set identically equal to zero; in certain

indicate that 6 wvas not used for actual numerical cases, but in

Reference 11 they present solutions with 6x10-%¢* and 10-* and
conclude that such magnitudes have negligible effect. The
current study also showed no influence to be present with 6
chosen to be a amall number.

§ cases, 0 vas alloved to vary. In Reference 1, Bhutta and Levis
E 119
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Hovever, for larger theta, (cases 7 and 8) say 020.01 or
0.1, the performance vas actually improved in the sense that
marching continued farther to larger Xea:. It should be noted
that improvement vas noted only for high Reynolds number and
swmall boundary layer cases; namely, the thin subsonic sublayer
case. Appreciably viscous flovs vere unchanged,

10.1 AREAS FOR FUTURE RESEARCH

Three suggestions for possible turther research into the
algorithm include the use of a sublayer assumption, a nonuniform
stepsize and more consistent initial conditions. The scheme
should be explored with appropriate pressure assumptions inserted

during the derivation of the blorck tridiegonal form. This will

allov investigation of the performance of this scheme with the

classical sublayer assumption.

As mentioned earlier, the algorithm of Bhutta and Levis

uses a variable step mize based on several factors. In the very

el WL NN .

viscous cases vhere the stable step size regime is small,!?
t perhaps a correctly calculated step size would provide a more

satisfactory marching performance. As the bouadary layer and

subsonic layers grov in the streamvise direction, the step size
can grovw accordingly. This is evidenced in Reference 1, but
there vas no clearly stated methodology to indicate hov the step
si=e vas calculated or how it varied.
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Figure 10.1 shows the constraint schematically. As the
subsonic laya2r increases from level 1 to 2, the minimum step asize
alsc increases. Assuming a maximum step size for a given level
of accuracy, there is a finite step size window which decreases
as the subsonic height increases until there is no stable step

size available.

Obtaining a better initial condition could expand on the
results of this study. Bhutta and Lewis used a starting code
vhereas thia work uses only an estimate for initial conditions.
Indicationa found during computer runs for Chapter 9 showed that
initial conditicns which better satiafy the governing equations
may allow the solution tc march farther, all other factors being
equal. The computer runs also shtowed that the initial profiles

for lovw and high Mach numbers are not necessarily similar.

The initial conditions used in this work are a compromise
betveen Mach numbers 3 and 15. Different initial conditions at
each Mach number would have satisfied the governing equations
more completely but this was not deemed to be crucial. As an
illustration, return to Table 9.1, case 10. The initial
conditiona (Fig. 6.2) provided for a slightly nonlinear profile
glope from the wall to the top of the boundary layer. When this
wvas changed to a linear slope, Case 10 was run for 200 steps at
&x=0.06 to a final X position of 13.0. The
results are shown in Figures 10.2 through 10.5. Judging from the
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small right hand zide magnitudes of Figure 10.4, the solution vas
still satisfying the governing equations and would have marched
farther. A more consistent set of initial conditions would not
change the stability characteristics of the scheme but they would
remove an extra source of error, which would aid in marching the

solution downstream.
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Figure 10.2 State Variable Profiles, X = 13.0
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Figure 10.4 Values of Governing Equations, X = 13.0
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